Decomposing oriented graphs into 6 locally irregular oriented graphs
نویسندگان
چکیده
An undirected graph G is locally irregular if every two of its adjacent vertices have distinct degrees. We say that G is decomposable into k locally irregular graphs if there exists a partition E1∪E2∪ ...∪Ek of the edge set E(G) such that each Ei induces a locally irregular graph. It was recently conjectured by Baudon et al. that every undirected graph admits a decomposition into 3 locally irregular graphs, except for a well-characterized set of indecomposable graphs. We herein consider an oriented version of this conjecture. Namely, can every oriented graph be decomposed into 3 locally irregular oriented graphs, i.e. whose adjacent vertices have distinct outdegrees? We start by supporting this conjecture by verifying it for several classes of oriented graphs. We then prove a weaker version of this conjecture. Namely, we prove that every oriented graph can be decomposed into 6 locally irregular oriented graphs. We finally prove that even if our conjecture were true, it would remain NP-complete to decide whether an oriented graph is decomposable into 2 locally irregular oriented graphs.
منابع مشابه
Decomposing Oriented Graphs into Six Locally Irregular Oriented Graphs
An undirected graph G is locally irregular if every two of its adjacent vertices have distinct degrees. We say that G is decomposable into k locally irregular graphs if there exists a partition E1∪E2∪ ...∪Ek of the edge set E(G) such that each Ei induces a locally irregular graph. It was recently conjectured by Baudon et al. that every undirected graph admits a decomposition into 3 locally irre...
متن کاملNew skew equienergetic oriented graphs
Let $S(G^{sigma})$ be the skew-adjacency matrix of the oriented graph $G^{sigma}$, which is obtained from a simple undirected graph $G$ by assigning an orientation $sigma$ to each of its edges. The skew energy of an oriented graph $G^{sigma}$ is defined as the sum of absolute values of all eigenvalues of $S(G^{sigma})$. Two oriented graphs are said to be skew equienergetic iftheir skew energies...
متن کاملOn the algorithmic complexity of decomposing graphs into regular/irregular structures
A locally irregular graph is a graph whose adjacent vertices have distinct degrees, a regular graph is a graph where each vertex has the same degree and a locally regular graph is a graph where for every two adjacent vertices u, v, their degrees are equal. In this paper, we investigate the set of all problems which are related to decomposition of graphs into regular, locally regular and/or loca...
متن کاملOn Decomposing Graphs of Large Minimum Degree into Locally Irregular Subgraphs
A locally irregular graph is a graph whose adjacent vertices have distinct degrees. We say that a graph G can be decomposed into k locally irregular subgraphs if its edge set may be partitioned into k subsets each of which induces a locally irregular subgraph in G. It has been conjectured that apart from the family of exceptions which admit no such decompositions, i.e., odd paths, odd cycles an...
متن کاملCompleting orientations of partially oriented graphs
We initiate a general study of what we call orientation completion problems. For a fixed class C of oriented graphs, the orientation completion problem asks whether a given partially oriented graph P can be completed to an oriented graph in C by orienting the (non-oriented) edges in P . Orientation completion problems commonly generalize several existing problems including recognition of certai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013